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Nonlinear diffraction of low-amplitude gravity waves in deep water due to a slightly 
submerged obstacle is studied experimentally in a wave channel and theoretically. 
The obstacle is either a circular cylinder or a rectangular shelf. The incoming waves 
(with wavelength A )  undergo strong nonlinear deformations at  the obstacle when the 
wave amplitude is finite. An infinite number of superharmonic waves are then 
introduced to the flow. Their wavelengths far away from the obstacle are A/4, A/9, 
A/16,. . . , due to the dispersion relation being quadratic in the wave frequency. The 
superharmonic wave amplitudes grow with increasing incoming wave amplitude up 
to saturation values. They are found to be prominent at  the obstacle’s lee side and 
vanishingly small at the weather side. The second- and third-harmonic wave 
amplitudes are, surprisingly, in several examples found to be comparable to the 
incoming wave amplitude. Up to 25% of the incoming energy flux may be 
transferred to the shorter waves. The theoretical model accounts for nonlinearity by 
the Boussinesq equations in the shallow region above the obstacle, with patching to 
linearized potential theory in the deep water. The theory explains both qualitatively 
and quantitatively the trends observed in the experiments up to breaking. 

1. Introduction 
Low-amplitude ocean waves propagating over shallow reefs, sunken rocks or 

underwater ridges may, in addition to being diffracted, be broken up into shorter 
superharmonic free waves due to nonlinear free-surface effects. This is true for swells 
propagating towards the Norwegian west coast where the bottom topography in many 
places has several shallow underwater ridges rising from deep water. The generation 
of the superharmonic waves changes the swell spectrum because a significant part of 
the incoming wave energy may be transferred to higher frequencies. This 
phenomenon is observed if one is sailing in a small boat seaward on a day when only 
swells are propagating towards the shore. Close to land the boat is responding to both 
longer and shorter waves. By sailing seaward, across the underwater ridges, the 
shorter waves get weaker and weaker, and in the open sea only the pure swells are 
observed. 

The generation of the free superharmonic waves also occurs at a shallowly 
submerged marine structure, idxoducing superharmonic oscillatory forces and 
contributions to the mean horizontal drift force acting upon the structure. The mean 
horizontal drift force due to the incoming and scattered waves, which is usually 
directed along the incoming wave direction, may be reversed when the superharmonic 
waves generated at  the structure’s lee side are large. 

In the present contribution we study simplified examples of this phenomenon 
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experimentally in a wave channel and theoretically. Incoming waves with low 
amplitude propagating in water with great depth are diffracted by a submerged body 
or a bottom topography which is close to the free surface. The body is a horizontal 
circular cylinder and the bottom topography is a rectangular shelf. Both geometries 
have axes parallel to the crests of the incoming waves. The presence of the obstacle 
introduces locally a shallow fluid depth which leads to significant deformations of the 
incoming waves as they propagate from the deep water into the shallow region above 
the obstacle and into the deep water again. The deformations of the waves a t  the 
obstacle are linear if the incoming wave amplitude, a,  is small compared to the local 
shallow water depth. Nonlinear effects become prominent a t  the obstacle when a is 
finite however. The initially symmetric wave profile then becomes asymmetric and 
skewed, and the waves may for larger values of a be spilling or plunging. The 
nonlinear deformations introduce, in addition to oscillations with the same frequency 
as the incoming wave frequency, o, a hierarchy of superharmonic oscillations to the 
flow with frequencies 2w,  30, 4w ..., which then generate trains of free waves 
propagating away from the obstacle. The wavelength of the incoming waves, 
denoted by A, is connected to the wave frequency w ,  through the dispersion relation 

A = 2 x g / d ,  (1) 

assuming that the water depth is greater than A. By replacing w by nw, n = 
2,3 ,4 , .  . . , in (1)  we obtain the wavelengths of the free superharmonic waves as 
A/4,  A/9, A/16, . . . ,which are superposed upon the reflected and transmitted waves 
with wavelength A. 

The aim of the paper is, by experiments and numerical simulations, to quantify the 
amplitudes of the superharmonic far-field waves, and to describe their generation in 
detail. We find that the superharmonic waves are remarkably pronounced a t  the 
obstacle’s lee side. The higher-harmonic wave amplitudes are, for increasing a, 
growing until saturation values are reached. As we shall see, the second- and third- 
harmonic free waves may, surprisingly, attain amplitudes which are as large as the 
first-harmonic transmitted wave amplitude. More specifically, we find that these 
components may be up to 60% of a.  This means that a significant amount of the 
incoming wave energy flux, up to 25% in the present examples, is transferred to 
much shorter wave components. The amplitudes of the higher-harmonic waves on 
the weather side of the obstacle are, on the other hand, always very small, even if 
there is a large first-harmonic reflected wave, or the incoming waves are breaking in 
front of the submerged obstacle. Thus, the deformations of the incoming waves 
introduce, practically speaking, changes in the flow only on the lee side of the 
obstacle . 

This problem was studied experimentally and theoretically by Williams (1964) for 
a horizontal plate situated very close to the free surface. His measurements are 
basically obtained locally at the plate, with the conclusions that wave components 
up to the third harmonic are present locally a t  the plate and in the far field. His 
results for the far field are, however, complicated to compare with and inconclusive 
regarding saturation values and breaking limits. We find here, for moderate 
incoming wave amplitude, qualitatively the same results as Williams, that 
oscillations up to the third harmonic are introduced to the flow. For larger values of 
a, we find, however, that very strong nonlinear effects take place locally a t  the 
obstacle, which means that the fourth- and higher-harmonic oscillations also are 
present. 

Measurements of second-harmonic free waves generated a t  a slightly submerged 
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cylinder are reported by Longuet-Higgins (1977, figure 5) in connection with 
measurements of negative horizontal drift forces. He finds that the second-harmonic 
wave amplitude may be as large as approximately 45% of the incoming wave 
amplitude, and furthermore that it reaches a saturation value, the magnitude of 
which is not, however, given in his example. Another experimental work, concerning 
the oscillatory first-, second- and third-harmonic diffraction forces upon a submerged 
circular cylinder is by Chaplin (1984). He reports measurements of the reflection 
power due to the circular cylinder, with the conclusion that the first- and higher- 
harmonic reflected waves always are very small, even if wave breaking occurs at the 
cylinder. We obtain here the same conclusions as Chaplin regarding the reflection 
power. Chaplin also mentions that second-harmonic free waves, with prominent 
amplitude, are generated at the cylinder’s lee side without, however, quantifying the 
amplitude. 

The second-harmonic free waves as well as the second-harmonic oscillatory forces 
may be computed by second order potential theory (Lee 1968; Vada 1987; Friis, 
Grue & Palm 1991) and for larger values of a by nonlinear simulations, which for a 
submerged circular cylinder was done recently by Cointe (1989). We compare the 
measurements of the second-harmonic free wave amplitude with results by the 
second-order theory, with excellent agreement for small values of the incoming wave 
amplitude. Cointe’s nonlinear simulations for a circular cylinder, originally compared 
with preliminary experiments by Grue & Granlund (1988), show striking agreement 
with the experiments, even for larger values of a when saturation is reached. 

To provide a simple explanation of the measured results and to illustrate the 
physical content of the generation mechanism of the superharmonic waves we 
develop a simplified nonlinear wave diffraction model for the shelf geometry valid for 
long incoming waves. The model accounts for nonlinearity by the Boussinesq 
equations in the shallow region above the shelf, with patching at  the ends to 
transient, linearized potential flow applied in the deep water. The patching procedure 
between the linear and nonlinear flow regimes is very effective, and the model shows 
good agreement with the experiments both locally at the shelf and in the far field, 
emphasizing that both nonlinearity and dispersion are important locally at the 
obstacle, while the linear, dispersive effects are the dominating far away. 

The experimental set-up and procedure for the measurements are outlined in $2. 
We describe in $3 the experimental results for the superharmonic wave amplitudes 
in the far field. The nonlinear diffraction theory for the shelf is outlined and discussed 
in $4. 

2. Experimental set-up and procedure 
The experiments were carried out in a wave channel at the Department of 

Mathematics at the University of Oslo. The channel is 14.2 m long, 0.47 m broad and 
is filled with water at a depth which is varied from 0.44 to 0.46 m. At  one end the 
channel is equipped with a wave maker, a vertical rigid plate driven by a hydraulic 
servo-controlled cylinder, which can perform oscillations under program control. At  
the other end of the channel there is a 1.5 m long absorbing beach, which reflects less 
than 10% of the incoming wave amplitude. The wave generation is very accurate 
and repeatable. The generator is operated such that the incoming waves are pure 
Stokes waves without second- and higher-harmonic parasitic free waves superposed. 

The frequencies of the incoming waves are chosen as either w = 27r x 0.95 Hz, 
27r x 1.05 Hz or 27r x 1.22 Hz, with corresponding wavelengths being h = 1.62, 1.37 or 
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1.04 m, respectively. The incoming waves are, practically speaking, deep-water 
waves, since the wavelengths corresponding to the wave frequencies above for 
infinite water depth are respectively h = 1.73, 1.42 or 1.05 m. The incoming wave 
amplitude is varied between 2 and 28mm, which means that the wave slope is 
smaller than 0.17. 

The reflected and transmitted waves are measured for two different circular 
cylinders and a rectangular shelf, all geometries spanning the whole width of the 
channel. The smaller cylinder has radius R = 100 mm, while the radius of the larger 
one is R = 190 mm. The rectangular shelf has a cross-section 500 mm long and 
410 mm high. The uppermost corners of the shelf are well rounded in order to reduce 
flow separation which may originate there. The geometries are placed with the lee 
side’s furthest extension a distance of 5.7 m from the average position of the wave 
maker, and with their tops positioned horizontally within a deviation less than 
0.2 mm across the width of the channel in order to minimize cross-variations in the 
flow which can occur a t  the lee side. The distance h between the uppermost point of 
the geometries and the mean free surface is varied between 25 and 100 mm. 

The surface elevation is recorded by four wave gauges with a resolution of 
approximately 0.1 mm. The gauges are static calibrated. The accuracy of the analog- 
to-digital recording of the surface elevation is tested by mounting the gauges on a 
motorized eccentric which forced the gauges to perform a circular path of a given 
radius with constant angular velocity in calm fluid, to simulate the recording of 
oscillatory wave motion. Repeated tests with this arrangement revealed that the 
recording of the surface elevation has a relative accuracy always better than 5 % .  

The four gauges are arranged couplewise symmetric with respect to  and 12 cm off 
the centreplane of the channel, and with one couple a distance behind the other. This 
distance is varied between 10 and 30 cm. The arrangement enables recording of the 
waves reflected by the geometry, the waves reflected by the beach, the higher- 
harmonic free waves and the forced components of the Stokes waves. Also, 
transverse variations, which are observed a t  the geometry’s lee side when wave 
breaking occurs, are recorded by this arrangement. 

First a set of runs was made with the gauges a t  the weather side, to measure the 
incoming waves and the reflection power of the obstacle. Next the runs were repeated 
with the gauges at  the obstacle’s lee side. The gauges a t  the weather side and the lee 
side were placed a t  different distances from the obstacle. Each experiment was 
running for 2 minutes before the recording was started. The transients were then 
small. Then recording continued for 1 minute. 

We have also made extensive runs continuing for up to 10 minutes, recording the 
waves a t  different starting times and at  several stations, obtaining the same 
experimental results. We have not observed slow-time changes in the wave field. 

Wave breaking may occur at the geometry when the incoming wave amplitude is 
large compared to the local water depth. We here denote, as seems to be standard, 
the breaking wave as a plunger when air bubbles are clearly observed in the fluid. By 
spilling we mean a breaking process which does not give rise to air bubbles in the 
fluid. When wave breaking occurs a t  the geometry, we observe that variations along 
the wave crests are introduced a t  the lee side. The measurements reveal, however, 
that the variations along the crests occur only for the superharmonic waves and not 
for the first-harmonic component. The latter result is as expected since the cross- 
variations introduced by the breaking process contain a minor part of the incoming 
wave energy, introducing a correspondingly small change in the first-harmonic 
transmitted wave, which contains the dominant part of the transmitted wave 
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energy. The higher-harmonic wave components originate from the steep wave at the 
obstacle however, and small cross-variations there are then continued down-wave of 
the obstacle. In  spite of the presence of the crosa-variations in the wave field, the time 
records of the surface elevation at  each geometric location show a steady pattern. 
This suggests that the cross-variations are simply due to the waves propagating 
down the channel with crests not exactly orthogonal to the channel walls. By 
averaging across the channel we obtain results for the higher-harmonic wave 
amplitudes which are almost independent of the distance from the geometry. Cross- 
variations in a wave channel may also be due to sloshing modes or cross-waves. The 
sloshing modes are very small in the present examples since the wave frequencies are 
chosen different from the cut-off frequencies. Cross-waves are characterized by their 
subharmonic motions. The experiments show no signs of cross-variations oscillating 
with frequencies &, w or $ however, which suggests that cross-waves are not 
introduced by the three lowest-harmonic components (w, 2w,3w). 

Nonlinear resonant interaction between the first-, second- and third-harmonic free 
waves generated is possible since their wave frequencies and wavenumbers are 
forming closed tetrads. The time records of the surface elevation at  each geometric 
location show, on the other hand, a steady pattern indicating that this interaction 
is not taking place in the experiments. 

2.1. Wave kinematics 
Let us introduce the positive x-axis in the mean free surface along the channel length 
directed towards the beach. The surface elevation qI of the incoming waves with 
amplitude a, wavenumber K and wave frequency w ,  generated by the wave maker, 
is 

qI(x, t )  = a cos (Kx-wt+ 6) +aj2) cos 2(Kx--ot +a) + . . . , (2) 

where t denotes time and 6 is a phase angle. ajz) denotes the amplitude of the forced 
second-harmonic wave component connected to the incoming wave. For given 
frequency w and water depth H the wavenumber K is obtained by the dispersion 
relation 

(3) 

In the examples considered, tanh KH % 1 ,  which means that K deviates very little 
from the value of the deep-water wavenumber given by w2/g.  The theoretical value 
of aj2) is thus 

u2 = gK tanh KH. 

a y  z &2K, (4) 

which agrees with the experimental observations. We assume that the waves 
reflected from the obstacle are given by 

q-(x, t) = a?) cos (Kx + wt + 82)) + x alf) cos n(Kx + wt + 62)) 
n>1 

+ x a!? cos (K,  x + not + din)), (5) 

where a!?, n = I ,  2, . . . , denotes the nth-harmonic reflected free wave amplitudes, 
aj!?, n = 2,3, . . . , denotes the amplitudes of the forced nth-harmonic wave components 
connected to a?) cos (Kx + wt + 6F) and S F ,  n = 1,2, . . . , are phase angles. The wave 
numbers K,, n = 2,3, .  . . ,are given by 

n > 1  

( r ~ ) ~ = g K , t a n h K , H ,  n = 2 , 3  ,.... (6) 



460 J .  Grue 

With tanhK, H very close to unity, we obtain 

K ,  = n2w2/g, n = 2 , 3 , .  . . . (7) 
At the lee side of the cylinder we assume that the waves are given by 

r+(x, t )  = a?) cos (Kx - wt + a?)) + aiy) cos n(Kx -wt + a?)) 
n > l  

+ C ay)cos(Knx-nwt$6!)), (8) 

where a!"), n = 1 ,2 ,  . . . , denotes the nth-harmonic transmitted free wave amplitudes, 
ui9, n = 2,3,  ..., denotes the amplitudes of the forced nth harmonic wave 
components connected to the first-harmonic transmitted wave and Sy), n = 1,2, . . . , 
are phase angles. 

The free wave amplitudes, as well as the forced wave amplitudes, are obtained 
from the time records of the surface elevation r(x,t). Introducing the Fourier 

n > l  

transform by 

r(x,t)exp(-inwt)dt, n =  1,2, ... (9) 

we may obtain the incoming wave amplitude, a, and the amplitude of the wave 
reflected by the geometry, a?), by measuring i,?l) at two positions x1 and x1 +Ax a t  
the weather side. We find 

1$(')(~,)-$(~)(x~+Ax)exp (-iKAx)l, 

l$(l)(xl)-$(l)(xl +Ax) exp (1KAx)l. 

1 
Isin (KAx)~ 

a =  

1 
Jsin (KAx)l 

a'" = 

At the lee side we obtain corresponding results for the first-harmonic transmitted 
wave and the reflection power due to the beach. We always find that the reflection 
due to the beach is less than 10 YO. The reflection by the beach is even smaller for the 
shorter higher-harmonic wave components, which gives that the higher-harmonic 
wave amplitudes a t  the lee side are obtained by 

I 
1 

a?) = 17j(n)(xl)-$(n)(x1+Ax)exp(inKAx)l, n = 2,3 ,4 ,  ..., (12) 
lsin (B(K, - n K )   AX)^ 

I$(n)(~l)-$(n)(xl +Ax) exp (iK,  AX)^, n = 2 , 3 , 4 , .  . . . (13) 
1 

lsin(f(K,-nK)Ax)I 
= 

The distance Ax between the gauges is varied between 10 and 30 cm. The position x1 
at the weather side is varied between a distance 0.8 and 1.5 m from the geometry. At 
the lee side the location of the gauges is varied between 2 and 6.5m from the 
geometry. The results obtained for the wave amplitudes with this method are almost 
independent of the values of Ax and xl. 

3. Experimental results 
3.1. The circular cylinders 

Let us then consider the waves at the lee side of the circular cylinders. In  figure 
1 (a ,  b)  we display measurements of a?) and a:") for the circular cylinder with radius 
R = 100 mm submerged with a distance h = 100 mm between the free surface and its 
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a (mm) a (mm) 
FIGURE 1.  Measurements of first- and second-harmonic free wave amplitudes at the lee side of the 
circular cylinder us. incoming wave amplitude; small cylinder, R = 100 mm; h = 100 mm: 0,  
ay) /a ;  A, a$)/a;  ...... , aj:)/a x t(a?))*K/a; ----, a\z)/a obtained by second-order theory (Friis 
et al. 1991). (a)  w = 2n x 1.05 Hz, ( b )  w = 2n x 1.22 Hz. 

uppermost point. The scatter obtained by different runs is indicated in the figures. 
The figures show that ay) /a  is always very close to unity. The results for .?)/a 
exhibit a roughly linear increase with a ,  which for small and moderate incoming wave 
amplitude agrees with computations by second-order potential theory (Friis et al. 
1991). We observe that the second-harmonic wave amplitude a?) is much smaller 
than a?). a?) is, however, much larger than the forced second-harmonic wave 
amplitude, ajy, which in all examples, within the accuracy of the experiments, agree 
with the values of +(ay) )2K,  also shown in the figures. The third- and higher-harmonic 
waves are very small in these examples. 

Next we reduce the distance between the free surface and the uppermost point of 
the cylinder to h = 50 mm. Measurements of a$') and a?) are shown in figure 2 (a)  for 
the cylinder with R = 100 mm and wave frequency w = 27t x 1.05 Hz, in figure 2(b)  
for R = 100 mm and w = 27t x 1.22 Hz and in figure 2(c )  for the larger cylinder with 
R = 190 mm and w = 27t x 1.05 Hz. a?), ay ) ,  . . . , are again very small. 

We observe that the values of .?)/a exhibit a pronounced decay with increasing 
incoming amplitude, with the largest decay occurring for the largest cylinder. The 
generation of the large second-harmonic wave must be partly responsible for this 
decay. In addition, energy loss due to wave breaking and dissipation in the bodies' 
boundary layer lead to reduced values of a$')/.. Since the transfer of energy to the 
second-harmonic wave and loss of energy due to wave breaking take place with 
approximately the same strength in all of the three examples, the dissipation seems 
to be stronger at the larger cylinder, with the larger decay in a$')/a, than a t  the 
smaller cylinder, with a weaker decay in .?)/a. 

The values of the second-harmonic free wave amplitude show some interesting 
features in these examples. We observe that a?)/. is a growing quantity up to a 
maximum which occurs in the vicinity of the spilling limit, which is also indicated in 
the figures. Note that the measurements of a?) fit well with the results from second- 
order potential theory for small incoming wave amplitude. The maximum value of 
a?)/. is, surprisingly, very close to 0.4 in these examples (figures 2a  and 2c) which 
means that the magnitude of the second-harmonic free wave amplitude may be 
comparable to the first-harmonic wave amplitude in these examples. For larger 
incoming waves .?)/a is a monotonically decaying function. The second-harmonic 
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F I Q ~ E  2. As figure 1, but h = 50 mm. (a )  Small cylinder (R = 100 mm), w = 2n x 1.05 Hz : x , ay)/a 
obtained by nonlinear theory, Cointe (1989, figure 12). ( b )  Small cylinder (R = 100 mm), o = 
2n x 1.22 Hz. (c) Large cylinder (R = 190 mm), o = 2n x 1.05 Hz. The arrows denote respectively 
spilling (S) and plunging (P) limits. 

free wave amplitude completely dominates the forced second-harmonic wave 
amplitude in these examples, i.e. a?) $- a$;). 

I n  figure 2 (a) we have also displayed theoretical results for a?) obtained by Cointe 
(1989) who exploits potential theory with the exact nonlinear free-surface condition. 
Cointe's computations, originally compared with Grue & Granlund (1988), are 
performed for w = 27c Hz, a slightly smaller frequency than ours. The theoretical 
results for u?) fit surprisingly well with the present measurements, even when spilling 
or plunging is observed in the wave flume. 

In  the next examples, figure 3 (a,  b ) ,  we consider the smaller cylinder situated very 
close to the free surface with h = 25 mm. The results for uy) and a?) are similar to the 
cases shown in figure 2 ( a ,  b ) .  The maximum of a!")/. is now occurring for a smaller 
incoming wave amplitude, a x 5 mm, with a maximum value being, surprisingly, 
almost the same as for the deeper submerged circles. Another interesting result is 
that the experimental values of a?) show excellent agreement with second-order 
potential theory for very small incoming wave amplitudes, but strongly deviate from 
this theory for incoming wave amplitudes greater than 5 mm and up to the spilling 
limit. We would expect second-order theory to be appropriate for obtaining a?) up 
to the breaking limit. The experimental results indicate, however, that strong 
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a (mm) a (mm) 
FIGURE 3. As figure 1, for the small cylinder (R = 100 mm), but h = 25 mm: (a) w = 2x x 1.05 Hz, 

( b )  w = 2x x 1.22 Hz. The arrows denote respectively spilling (S) and plunging (P) limits. 

nonlinear effects are contributing to the generation of the second-harmonic waves at 
the cylinder, which are not included in the second-order theory. As in the former 
examples, the third- and higher-harmonic waves have very small amplitudes. 

One of the striking results for the circular cylinder is that linear potential theory 
gives a vanishing reflection coefficient (Dean 1948). Very recently, it has been shown 
by Friis (1990), using the method of Grue & Palm (1985), and by McIver & McIver 
(1990) that the second-harmonic reflection coefficient is also identically zero. 
Furthermore, Palm (1991) shows that the dominant part of the nth-harmonic 
reflection power, n = 3,4,  . . . , vanishes exactly. Our measurements support these 
theoretical findings. The measured first-harmonic reflection power, a'l)/a, is always 
less than 0.05, which is the accuracy of the experiments, even if the waves are 
breaking at the cylinder. With no first-harmonic reflection, i.e. a'].) x 0, which gives 
that a13 x 0, the surface elevation at  the weather side of the cylinder is 
approximately given by 

T(Z, t )  = a cos (Kx- wt + 6)  + a p  cos 2(Kz  - wt + 6)  

+a?) cos (K2 z + 2wt + 62)) + higher-harmonic components. (14) 

I t  is easy to demonstrate that we may measure a!? using (12) in this case. The 
measurements show that a!? is much smaller than a?. We also find that (+j(n)l, n = 
3,4, . . . , are very small at the weather side of the cylinder. Our experimental results 
thus indicate that there are no first- and higher-harmonic reflected waves due to a 
submerged circular cylinder. This result is also found experimentally by Chaplin 
( 1984) who considered circular cylinders with deeper submergence. 

3.2. The rectangular shelf 
In  the next examples we consider the higher-harmonic waves generated at the 
rectangular shelf. The horizontal extent along the wave channel is 2L = 500 mm and 
the vertical walls extend down to the channel bottom. The water above the shelf has 
a constant depth h which is chosen to be either 37.5 or 50 mm. A large part of the 
incoming wave energy may be reflected by this geometry, depending on the incoming 
wavelength, the length of the shelf and the local water depth. A major part of the 
incoming wave energy is, however, transmitted when h is shorter than about ten 
times the horizontal extension 2L, i.e. h > 20L. 
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FIGURE 4. First-, second- and third-harmonic free wave amplitudes at the lee side of the 
rectangular shelf, vs. a for h = 37.5 mm, 2L = 500 mm, w = 2x x 0.95 Hz. Measurements: 0,  @ ) / a ;  
A, ay) /a  ; 0 ,  ai3)/a. Nonlinear theory : -, @)/a  ; ----, ai2)/a ; . . . . . . , ui3)/a. The arrows denote 
respectively spilling (S) and plunging (P) limits. 
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FIGURE 5 .  As figure 4, but h = 50 mm, w = 2x x 1.05 Hz. 

In  figure 4 we display measurements of uy) ,  u$-") and uy) obtained for h = 37.5 mm 
and w = 27c x 0.95 Hz. We observe that the generation of the higher-harmonic waves 
is more powerful in this example than in the previous ones. Interestingly, a 
pronounced third-harmonic wave is also present. The results for uy) and uy) are very 
similar to those for the circular cylinders, with the exception that the values of uy) 
and uy) now are almost of equal magnitude at the spilling limit. Surprisingly, the 
third-harmonic wave amplitude may be as large as 60% of the incoming wave 
amplitude and becomes even larger than u$-") in the vicinity of the spilling limit. 
Approximately 25 % of the incoming energy flux is transferred to the superharmonic 
waves at the spilling limit in this case. In  figure 5 we display results for another 
example with the shelf where the parameters are h = 50 mm and w = 2n x 1.05 Hz. 
In  this case the maximal value of u$-")/u is approximately 0.6. uy) /u  is, however, much 
smaller in this example than in the former. The fourth- and higher-harmonic waves 
in these examples have wavelengths shorter than 10 cm. Measurements of such short 
waves are very complicated since the energy is quickly dissipated. 

In  both examples with the shelf the measured first-harmonic reflection power is 
U'"/U z 0.2. The amplitudes of the higher-harmonic reflected waves are, however, 
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smaller than the experimental error. Other examples, not shown here, also show that 
pronounced higher-harmonic waves are introduced a t  the lee side of the obstacle, 
while there are, practically speaking, no such waves at  the weather side. This is also 
the case when there is a large reflected first-harmonic wave. 

In figures 4 and 5 we also display theoretical results for a?), a!") and a$-"). The theory 
is outlined and discussed in $4. The main idea is to account for nonlinear and 
dispersive effects in the vicinity of the obstacle with patching to linearized theory 
describing the flow elsewhere. 

3.3. Saturation 

In all the examples for the circular cylinders and the shelf we find that the generation 
of the superharmonic wave components takes place with increasing strength for 
growing wave amplitude up to when breaking occurs at  the obstacle. At still higher 
incoming wave amplitude the transfer of energy to the superharmonic components 
reduces in power, and we find that the superharmonic wave amplitudes become 
saturated. The slopes of the superharmonic waves in all the examples are found to 
be smaller than about 0.1. 

3.4. Dissipation of energy 

We observe in all examples discussed that the dissipation of energy becomes more 
and more powerful with increasing wave amplitude. The dissipation in the boundary 
layer at  the geometries, being laminar in the present examples, is proportional to 
(nu); times the amplitude of oscillation squared for the nth-harmonic oscillation. 
Thus, the dissipation becomes more pronounced when the superharmonic oscillations 
are large, which explains why we observe a stronger dissipation in the examples for 
the shelf than for the cylinders. 

4. Nonlinear theory 
The measurements show that the nth-harmonic transmitted wave amplitude is 

growing proportional to the nth power of the incoming wave amplitude when this is 
small. For larger a, however, a?) grows slower than a". This is true even ip the non- 
breaking regime, see figures 2-5. It is of interest to develop a nonlinear theory which 
can provide a simple explanation of these features and illustrate the physical content 
of the problem. Motivated by the flow properties revealed in the experiments, both 
for the circular cylinders and for the shelf, a simplified theory is developed for the 
latter geometry. The main idea is to utilize the distinct flow properties of respectively 
the deep and shallow fluid layers. Characteristic for the experiments is that the 
incoming waves are of small wave slope and that the waves are long compared to the 
local depth in the shallow region above the obstacle. This can mathematically be 
expressed by 

aK+ 1, (15) 

Kh 4 1 (16) 

and constitutes basic assumptions for the theory. Besides (15) and (16) we assume 
that the fluid is inviscid and incompressible and the motion irrotational. The theory 
explains, as we shall see, the experimental results both qualitatively and 
quantitatively up to when breaking occurs. Linearized theories for the shelf 
geometry have been studied earlier (see e.g. Newman 1965; Miles 1967; Newman, 
Sortland & Vinje 1984). The present problem is also related to the problem of linear 
and nonlinear oscillations occurring in a harbour, a review of which can be found in 
for example Mei (1989, $5, $11.12). 
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4.1. Nonlinear flow in the shallow region 
Coordinates x and y are applied with the x-axis in the mean free surface (as 
introduced in $2) and the y-axis on the vertical symmetry line of the shelf. The 
corners of the shelf are then located at  x = f L,  y = - h. The water depth h above the 
shelf is assumed to be small compared to the horizontal extension, 2L. The depth 
outside the shelf is assumed infinite. A transient mathematical formulation is 
adopted, with a wave train incident from x = - 00. The wave train behind the 
transient front is described by the wavenumber K, frequency w =  (gK); and 
amplitude a. 

The incoming waves are assumed to be long compared to the local depth in the 
shallow region above the shelf, which means that the flow there is weakly dispersive. 
To account for both nonlinear and weakly dispersive effects we apply the nonlinear 
Boussinesq equations to the flow there, i.e. 

a rl = - - ( (h+q)u) ,  
at ax 

where u and pd  denote respectively depth-averaged horizontal velocity and 
dynamical pressure (divided by the fluid density), 

4.2. Linear %ow outside the shallow region 
The flow a t  the weather side and the lee side of the shelf, i.e. for 1x1 > L ,  may 
according to the previous assumptions be governed by a velocity potential q5 which 
satisfies the two-dimensional Laplace equation, $xx+q5y1/ = 0,  in the fluid domain. 
The potential q5 is subject to the nonlinear free-surface boundary condition. Assuming, 
however, that the wave slope of the incoming waves is small and that the diffracted 
waves are also of small wave slope, the free-surface boundary condition may be 
linearized, i.e. q5tt +g$, = 0 at  y = 0,IxI > L. At the vertical walls there is no mass 
flux, i.e. q5x = 0, at x = +L, - 00 c y c - h. Furthermore, the fluid motion decays to 
zero, i.e. IV$l-+O, as y+- 00. The initial conditions are that there is no applied 
pressure at the free surface and no free-surface elevation, i.e. q5 = q5t = 0, at t = 0. 

The potential q5 governing the flow at the weather side (x < - L )  is appropriately 
composed of a standing wave potential, q50, and a velocity potential due to the 
outflux at x = -L, q5-L, i.e. 

q5 = $0 + $4. (20) 

The standing wave potential corresponding to an incoming and a reflected wave, 
both with amplitude a and wavenumber K = w2/g ,  is 

q&(x, y, t )  = -2(ag/o) exp (Ky) cosK(x+L) sinwt. (21) 

In the simulations a increases monotonically from zero at  t = 0 to a constant value. 
The transient velocity potential q5-L may be given by a source distribution over the 

gap at  x = -L with source strength q-L(y, t ) .  By applying the velocity potential due 
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to one source located at  the point (-L,  y’), satisfying the boundary conditions and 
initial conditions developed above, $-L is (see Wehausen & Laitone 1960, eqn 13.54) 

where r = Ix+L+i(y-y’)J and rl = lx+L+i(y+y’)J. The potential governing the 
flow on the lee side (x > L )  may correspondingly be given by a source distribution 
qL(y,t) over the gap at x = L,  i.e. 

dk 
dTpL(y’, 7) ---isin[(gk)i (t-T)] exp k(y+y’) c o s k ( x - L ) ,  (23) 

- - X @ h d y ’ l  J O  (gk)’ 

where r = Ix-L+i(y-y’)l and rl = Ix-L+i(y+y’)l. 

4.3. Patching 
From (21) and (22) we obtain 

a 
--($O+$-L)-f-~-L(Y,t), ax x-t-L- (24) 

and from (23) 

(25) d , + $ l , ( Y ,  a$L t) ,  x+L+. 

Introducing the volume flux in the shallow region by 

conservation of mass at, the gaps gives 
c? = u(r+h) ,  

We can show for the linearized case that the vertical variations in qrtL give 
contributions to the flow some distance away from the gaps that are asymptotically 
small in Kh when Kh + 0. This justifies replacing the source distributions at x = f L 
by line sources of constant strength over the gaps provided that Kh << 1. Applying 
(24), (25) and (27) we obtain within this approximation that q f L  are given by 

The velocity potentials $-L at x = -L, and $L at x = L, then become 

[(gk); (t -T)] (1 - exp ( - kh)) exp (ky), (30) 

where in the last term we have carried out the vertical integration. 
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The numerical integration of the linearized Boussinesq equations with (30) applied 
at  x = L is compared with the corresponding analytical frequency domain solution. 
The numerical agreement between the two methods is better than 1 per mille, and 
indicates the accuracy of the time integration. More refined matching procedures 
between the flows in the shallow and deep regions have been performed within 
linearized theory in the frequency domain. We compared our analytical frequency 
domain solution with the matching procedure exploited by Newman et al. (1984), 
valid for Kh 6 1. The only difference between the two methods appears in one 
particular factor in the solution, with the following difference for Kh < 1 

In (4Khln) + y- 1 +ni (Newman et al. 1984, eqn 18), 

In Kh + y - 1 + xi (present theory), 

where y = 0.5772., . denotes Euler’s constant. The two methods predict the flow 
characteristics, e.g. the complex reflection and transmission coefficients, with a 
relative difference which disappears when Kh + 0 and increases monotonically up to 
about 5% when kH = i (h/2L = O(O.1)). 

The error introduced by the patching between the nonlinear and linear flow 
regimes can be measured e.g. by invoking the time-averaged energy flux as a function 
of the horizontal coordinate. This is done in 34.7. We find that there is a net increase 
across the shelf in the time-averaged energy flux, normalized by the energy flux of 
the incoming wave, proportional to the incoming wave amplitude when this is finite, 
see figure 10. This net increase is found to be - 8% at the spilling limit for the 
example shown in figure 4. This means that the patching has introduced an error - 4 ‘YO in the free-surface elevation and the fluid velocities, since the dominant part 
of the energy flux is proportional to the incoming wave amplitude squared. If the 
incoming wave amplitude is halved, the errors in the free-surface elevation and the 
velocities due to the patching are consequently - 2 ‘/o. 

4.4.  Numerical integration 
Let the domain 1x1 < L be subdivided into N +  1 segments with equal length 
Ax = 2L/(N+ 1 )  and let At denote a constant time step. Following Pedersen (1991) 
the Boussinesq equations are integrated by a scheme that is staggered in both time 
and space, i.e. 

[S, 7 = -a,{ (1 + r“,) u} ]y+ i ) ,  

[a, u + 8, T = - &PdIi$\, 

where T(k\  (+Y = +(@)&:) ( a X ) ! k t i )  (33) 

(31) 

(32) 

and [ ]ik) denotes the value at  xi = -L + i A x  at time t ,=/At .  The symmetric 
difference operator, S,, and the midpoint average operator, ( ) , of a quantityf(x, t ) ,  
are introduced by 

(35) 

The operators Sx and are defined accordingly. Thus, u is obtained at xi+;, 
i = 0, 1 , .  . . , N  at  tk+f = (k+$ At, and 7 at xi,i = 1,. . . , N  at tk+l = ( k +  1 )A t .  The 
overall discretization error of the scheme is O(Axz,  Atz) .  

t ( k )  - 1 r1i - Z l f ( x i ,  ‘k+;) +f(”i> t k - $ ) l .  
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The free-surface elevation, 7, and the depth-averaged dynamical pressure (divided 
by the density), p d ,  a t  x = +L are related to the volume flux u(y + h) by (ZO), (21) and 
(30). This closes the numerical scheme. Evaluation of the memory term in a$,./at 
follows Yeung (1982), i,e. 

x (1 - exp ( - kh)) exp (ky). 

We can show that 

where 

and F ( u )  denotes Dawson’s integral, given by 

F ( u )  = exp ( -u2)  exp (az) da, J: (39) 

Dawson’s integral may be computed effectively, see Newman (1987). Applying (36) 
and (37) we obtain 

where Q = d&/dt. 
Convergence of the numerical scheme is achieved by increasing the value of N and 

decreasing the time step At. No smoothing is applied. We find that the simulations 
have converged forN = O( 100) and At(g/h)z = 0(0.1), giving the integrated quantities 
with at least three significant digits, except close to the patching boundary in the 
most nonlinear examples (corresponding to the spilling limit) where a small 
(unimportant) reflection appears (see figures 8 and 10). 

4.5. The far-field waves 
The superharmonics introduce volume fluxes a t  the gaps which for t + 00 behave as 

&(+L,t)  = Re &yLexp(ino)t+O(l/t). 
n a 1  
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The velocity potentials $*L become accordingly 

$ + L ( ~ , y , t )  = + R e  G(n)(x ,y ,  &L,y‘)dy’ 

where G(,) denotes the Green function due to a point source with unit 
oscillating with frequency nw. For x + f m we have 

G(,) = iexp[K,(y+y’ T i(z T L))], x + + m ,  

47 1 

$trength, 

(43) 

where the wavenumber for the nth mode is given by K, = n2w2/g = n2K. The free- 
surface elevation far away from the shelf then is given by 

r(x,t)  = Re A~)expi(nwt--K,(x-L)), x + m ,  (44) 
na1  

r(x,t) = Re{aexpi(wt-K(x+L))+ C AFexpi(nwt+K,(x+L))), z+- 00 ,  
n > l  

(45) 

where A?) = (2&p)/noh) ( 1  -exp ( - K ,  h)), (46) 

A?) = -(2&l!/nwh)(1-exp(-Knh))+6,,a, (47) 

and S,, denotes the Dirac delta function. Thus, the amplitude of the nth-harmonic 
wave is related directly to the nth-harmonic component of the volume flux a t  the 
gap. 

4.6. Numerical results ; comparison with experiments 

From (46) and (47) we obtain respectively the far-field amplitudes up)  and a?) 
for the same parameters as in the experiments. The theoretical predictions of a!“), 
n = 1,2,3,  as functions of the incoming wave amplitude are shown in figure 4 for 
d h l g  = 0.136 and h/2L = 0.075, and in figure 5 for d h / g  = 0.22 and h/2L = 0.1, in 
addition to the experimental results. The theory shows overall a good agreement 
with the experiments even close to the spilling limit. The agreement is very good for 
small and moderate a. We remark that the theory predicts the strongly nonlinear 
behaviour of .?)/a and a?)/. particularly well in the example with the longest 
incoming wave and smallest h (figure 4). 

The superharmonic wave amplitudes a t  the weather side, a?), n = 2 , 3 , .  . . , 
obtained by (47), are always very small, in agreement with the experiments. This is 
because the volume flux &(-L,t) at the left end of the shelf shows, practically 
speaking, no signs of superharmonic oscillations, even for larger incoming wave 
amplitudes. 

To more closely examine the deformation of the incoming waves we show in figures 
6 and 7 numerical simulations in a natural scale and photographs of the surface 
elevation at the shelf for successive time instants. I n  figure 6 the amplitude is a = 
5.1 mm which corresponds to the spilling limit in the experiments. In figure 7 the 
amplitude is 7.5 mm which is slightly less than the spilling limit at  8 mm. The 
agreement between the theory and experiments is striking. The figures exhibit how 
the long incoming wave with one well-defined crest steepens a t  the left end of the 
shelf (figures 6(i) ,  7(i)). When the wave has moved to the right end, however, we 
clearly observe that higher-harmonic wave components are superposed on the longer 
wave (figures 6 (ii, iii), 7 (ii)), introducing superharmonic oscillations in &(L, t )  with 
corresponding strength. 

The deformation of the waves as a function of the incoming wave amplitude is 
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FIQURE 8. Surface eleyation above the shelf; h/2L = 0.075, d h / g  = 0.136. Numerical simulations 
with N = 100, At(g/h)r = 0.1: -, a / h  = 0.136; ----, a / h  = 0.1; .....*, a / h  = 0. (a) Same time 
instant as in figure 6(i). ( b )  Same time instant as in figure 6(ii). 
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FIQURE 9. Volume flux &(L,t);  h/2L = 0.075, d h / g  = 0.136. Numerical simulations with 
N = 100, At(g/h)i = 0.1: -, a / h  = 0.136; ---, a / h  = 0.1; ...... , a / h  = 0. 

tklhS 

exhibited in figure 8 (a, b )  for the free-surface elevation and in figure 8 for the volume 
flux at x =  L.  We note the strong presence of the second- and third-harmonic 
components in the free-surface elevation and the volume flux &(L, t ) .  The numerical 
simulations show that there are significant interactions up to the fifth time-harmonic 
oscillation for the largest incoming wave amplitude. 

We have also done some numerical simulations by neglecting the dispersion in the 
shallow region. The Boussinesq equations are then reduced to the nonlinear Airy 
equations. For small values of alh,  when the generation of the shorter waves is 
weaker and the effect of the dispersion is correspondingly small, the Airy equations 
and Boussinesq equations give coinciding results. For larger a lh  the Airy equations 
are found to predict unrealistically steep wave profiles in the shallow region, 
introducing reflection of shorter waves at  x = L. 

4.7. The mean energyjux 
As a check of the computations we invoke the mean energy flux at a vertical control 
surface extending from the bottom of the fluid layer to the free surface, which at  a 
location x is given by 

R, = s y .  bottom 

Here v denotes the velocity vector in the fluid and a bar the 
shallow region we obtain 

(48) 

time average. In the 
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FIGURE 10. Time-average: energy flux us. horizontal coordinate; h/2L  = 0.075, d h / g  = 0.136, 
X l L  

N = 100, At(g/h)x = 0.1 : -, a / h  = 0.136; ---, a / h  = 0.1; . * . * * * ,  a / h  = 0. 

For t --f co the mean energy flux at x = - 00 is given by 

R- = E c(’) - ELn) c;), 
00 o g  

n 2 l  
and at x = 00 by 

R,  = C EY’cC), 
n d l  

where E, = +pga2, ELn) = $glA?)(2 and EP) = $glAy)(2 denote the mean energy 
densities of the incoming, reflected and transmitted waves, respectively ; cp) = 
%/nu, n = 1,2,  . . . , denote the corresponding group velocities of the incoming and 
scattered waves. 

The value of R-,  gives R, for x < -L-, and R ,  gives, correspondingly, R, for 
x 2 Lf. In figure 10 we show R, as function of the incoming wave amplitude and 
horizontal coordinate. The figure illustrates that the numerical scheme (31)-(32) 
introduces a small variation in the energy flux along the horizontal coordinate, which 
in the linear case is about I %. There is also a net increase in RJE,  c.f)  across the shelf 
that is proportional to the incoming wave amplitude when this is finite. This net 
increase is obviously introduced due to the patching at the gaps between the 
nonlinear and linear flows and indicates the error in the model due to the patching. 
We observe that the variation in R, is smooth, except in the most nonlinear case, 
which corresponds to the spilling limit in the experiments. Then small rapid 
variations are observed close to x = L. These variations, with counterparts in figure 
8 (a,  b ) ,  illustrate the numerical reflection introduced by the patching between the 
linear and nonlinear flow regimes. The numerical reflection is, however, very small 
and vanishes for small and moderate alh. 

5. Conclusions 
We have experimentally and theoretically studied incoming deep water waves 

with small wave slope propagating over a slightly submerged circular cylinder or a 
rectangular shelf. The wavelength is much greater than the local water depth above 
the obstacle. Nonlinear free-surface effects a t  the obstacle introduce asymmetry and 
skewness to the initially symmetric wave profile, and generate a hierarchy of shorter 
superharmonic free waves propagating away from the obstacle, superposed upon the 
transmitted and reflected waves with wavelength equal t o  the incoming wavelength. 
The superharmonic waves may attain prominent amplitudes at the obstacle’s lee 
side. This is not true at the weather side of the obstacle where the superharmonic 
waves are very small. The measurements indicate that there are no first- and higher- 
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harmonic reflected waves by the circular cylinder. The generation of the higher- 
harmonic waves at  the lee side becomes more and more powerful with increasing 
incoming wave amplitude up to when breaking occurs at the obstacle. At the 
breaking limit the amplitudes of the second- and third-harmonic waves attain 
maximal values compared to the incoming wave amplitude, and are in some 
examples found to be of the same order of magnitude as the first-harmonic 
transmitted waves. We find that up to about 25 % of the incoming energy flux may 
be transferred to the super-harmonic waves. 

The theoretical model developed for the shelf geometry accounts for nonlinearity 
by the Boussinesq equations in the shallow region above the shelf, with patching a t  
the edges to linearized potential theory applied in the deep water. The theoretical 
and experimental results for the local flow at the shelf and in the far-field show good 
agreement for non-breaking waves. The theoretical model emphasizes that both 
nonlinearity and dispersion are important at the obstacle, while dispersion is the 
dominating effect for the flow far away. The patching procedure applied between the 
linear and nonlinear flows is very efficient in the present examples. 
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